A global meshless collocation particular solution method for solving the two-dimensional Navier–Stokes system of equations
نویسندگان
چکیده
منابع مشابه
A Numerical Meshless Technique for the Solution of the two Dimensional Burger’s Equation Using Collocation Method
In this paper we propose a meshfree technique for the numerical solution of the two dimensional Burger’s equation. Collocation method using the Radial Basis Functions (RBFs) is coupled with first order accurate finite difference approximation. Different types of RBFs are used for this purpose. Performance of the proposed method is successfully tested in terms of various error norms. In the case...
متن کاملA Meshless Method for Numerical Solution of Fractional Differential Equations
In this paper, a technique generally known as meshless numerical scheme for solving fractional dierential equations isconsidered. We approximate the exact solution by use of Radial Basis Function(RBF) collocation method. This techniqueplays an important role to reduce a fractional dierential equation to a system of equations. The numerical results demonstrate the accuracy and ability of this me...
متن کاملA new method for solving two-dimensional fuzzy Fredholm integral equations of the second kind
In this work, we introduce a novel method for solving two-dimensional fuzzy Fredholm integral equations of the second kind (2D-FFIE-2). We use new representation of parametric form of fuzzy numbers and convert a two-dimensional fuzzy Fredholm integral equation to system of two-dimensional Fredholm integral equations of the second kind in crisp case. We can use Adomian decomposition method for n...
متن کاملA Computational Meshless Method for Solving Multivariable Integral Equations
In this paper we use radial basis functions to solve multivariable integral equations. We use collocation method for implementation. Numerical experiments show the accuracy of the method.
متن کاملModified Wavelet Method for Solving Two-dimensional Coupled System of Evolution Equations
As two-dimensional coupled system of nonlinear partial differential equations does not give enough smooth solutions, when approximated by linear, quadratic and cubic polynomials and gives poor convergence or no convergence. In such cases, approximation by zero degree polynomials like Haar wavelets (continuous functions with finite jumps) are most suitable and reliable. Therefore, modified numer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2013
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2013.04.014